N.B.: (1) Question No. 1 is compulsory.

(3 Hours)

[Total Marks: 80

		(2) Attempt any three questions from the remaining five questions.			
		(3) Assume suitable data if needed and state it clearly.			
		(4) Figures to right indicate full marks.			
1.	Solv	e any five:	4		
	(a		"subspace of 4		
		a vector space".	4		
	(b				
		values 2 and 4 respectively. If $W = 3X - Y$, Find the mean and variance of random variable W.			
	(c		4		
	(d		4		
	(0	in data compression.			
	(e	The state of the s	4		
	(f		4		
		filtering.			
			-		
2.	(a)	Check whether the following vectors are independent [1 3 2] ^T , [2 1 3] ^T	6		
	4.	$\begin{bmatrix} 3 & 2 & 1 \end{bmatrix}^T$.	6		
		Explain the four fundamental subspaces of linear operator.	8		
	(c)	Explain Gram-Schmidt orthogonalization procedure.			
3	(2)	Let $x(n) = A + w(n)$ $n = 0, 1,, N-1$ where $w(n)$ is WGN with zero mean and	10		
٥.	variance σ^2 . Determine the CRLB for A.				
	(b) Consider a linear transformation $\mathbf{y} = \mathbf{A}^T \mathbf{x}$. The mean vector $\mathbf{\mu}_{\mathbf{x}} = [2 \ 1]^T$, the mean vector of \mathbf{y} if \mathbf{A} is $2x2$ identity matrix.		4		
	(c)	State and explain central limit theorem (CLT).	6		
		The state of the s			
4.	(a)	Explain the concept of Innovations representation. What is whitening	6		
	(h)	process. Define and explain following			
	(0)	(i) Bias of Estimator	4		
		(ii) Efficient estimator			

(c) Compare and contrast orthogonal and triangular decompositions 10 for zero mean random vectors. 5. (a) What is Kalman filtering? Discuss in detail. 10 (b) A random process is defined as $X(n) = A \cos(2\pi n)$, where A is a Gaussian 10 random variable with zero mean and variance σ^2 . Determine the density function of X(0) and X(1). (i) (ii) Is X(n) a stationary process in any sense? 6. (a) A causal LTI system is described by the difference equation 10 $y(n) = \frac{1}{2}y(n-1)+x(n)+x(n-1)$ is driven by zero mean WSS process with autocorrelation $R_{\ell}(\ell) = 2 \delta(n)$. Determine the cross power spectral density between input and output (b) Power spectral density at the output (b) It is desired to estimate the value of a DC level A in WGN or 10 x(n) = A + w(n), n=0,1,..., N-1.where w(n) is zero mean and uncorrelated and each sample has variance $\sigma^2=1$. Consider following estimator $\hat{A} = \frac{X(0) + X(N-1)}{2}$

Find the mean of the estimator. Is the estimator biased? Compute the variance of the estimator.

OPTICAL COMM. NETWORK

QP Code : 64269

[Total Marks . 80

		(5 Hours) [Hotal Maiks.	00
*	N. 1	 (1) Question No. 1 is compulsory. (2) Attempt any three questions out of the remaining five questions. (3) Assume suitable data whenever necessary and justify the same. 	
1.	(b) (c)	Define path, line and section used in the SONET/SDH frame. How the signal get degraded in optical fiber communication? Explain in brief. Compare stimulated Raman scattering and stimulated Brillouin scattering. Explain in brief the Dimensioning wavelength network.	20
14.5	(e)	What is unidirectional and bidirectional WDM system?	
2.	(a)	Explain Self phase and Cross phase modulation. What are Kerr nonlinearities?	10
	(b)	Explain Dispersion Compensating fibers in detail.	10
3.	(a)	Explain four wave mixing in detail. Consider 75 km link of dispersion shifted single mode fiber carrying two wavelengths. At 1540.0 nm and 1540.5 nm, then calculate new frequency generated due to Four wave mixing (FWM).	10
	(b)	List the properties of Solitons, and explain Loss managed Solitons in detail.	10
4.	(a)	What is optical transport network (OTN)? Explain OTN frame structure in detail.	10
	(b)	Explain resonant cavity enhancement (RCE) Photo detector in detail.	10
5.	(a)	What is optical amplifier? Compare Semiconductor optical amplifier, Raman amplifier and Erbium doped amplifier.	10
	(b)	List and explain different Lightpath topologies, and write the equations for number of Wavelength needed to support the traffic and router ports required.	10
6.	Wri	te short notes on: (a) Four RWA algorithms (b) Metro Network (c) Optical Cross connect (d) Optical Switching	20

Total Marks: 80

(3 Hours)

	1) Questions 10.1 is compulsory.	
	2) Solve any three questions out of remaining five questions	
,	3) Draw neat labeled diagram whenever necessary	
(4) Assume suitable data if necessary	
	· ,	
9		
Q.1	Solve any four out of five	
	i) Explain Power spectral density	5
	ii) What is Harr Wavelet? Write its properties.	5
	iii) What are Time Domain operations in Musical Sound Processing	5
	iv) Write any four characteristics of adaptive system	5
	v) Compare Bartlett , Welch and Blackman-Tukey methods of Power	5
1	Spectrum Estimation	
Q.2	a) Explain Yule-Walker method for AR model Parameters.	10
V.2	b) What is QRS complex in ECG and Explain any method for QRS complex	10
	detection.	* •
	detection.	
0.2	a) What are the time and frequency domain ECG parameters? Explain with	08
Q.3		
	the ECG waveforms.	12
	b) Explain with neat block diagram the Adaptive Echo Cancellation.	12
Q.4	a) Derive LMS Algorithm and mention its limitations	10
	b) Explain Application of Wavelet Transform for Signal Denoising.	10
*		
Q.5	a) How Occular Artifacts are removed from Human EEG? Explain with neat	10
2.0	diagram.	
	b) Explain the Three Basic Filters used in Equalization of Digital Audio	10
	Signals.	
	Digitats.	1.80
0.6	a) What is Chart Time Fourier Transform and evaloin have it is switchle for	08
Q.6	a) What is Short Time Fourier Transform and explain how it is suitable for	00
	analysis of Speech Signals.	06
	b) Explain with block diagram the Adaptive Linear Combiner.	06
	c) Compare Short Time Fourier Transform and Wavelet Transform	06

ME/EXTC/Sem-I(CBCS)/Next Generation Network/Nov-16

Q.P. Code: 842201

		(3 Hours)	[Total Marks : 80	
N,B		 Question No.1 is Compulsory. Solve any three from the remaining questions. 		
1.	(a (b	empt the following (a) Explain the MPLS Services and Component. (b) Give overview of VPN from Layer 2 and 3 prospection (c) Explain QoE in NGN (d) Explain the concept of SDR and Cognitive Radio		20
2.	(a) (b)	Classify the Wireline NG Technologies and Explain Draw the TISPAN Architecture and explain in detail.		10 10
3.	(a) (b)	What is VOIP? Compare VOIP V4 and V6 in detail Explain name, numbering, and addressing schemes in		10 10
4.	(a) (b)	Explain migration of PSTN system to NGN. Explain Fixed Mobile Convergence in detail.		10 10
5.	(a) (b)	Explain service Convergence in NGN. Explain transition of IP networks to NGN.	•	10 10
6.		ite any four Short Notes on Followings: (a) AAA Schemes in NGN (b) FTTH Concept (c) IPTV (d) NGN Evolution		20

NGN Drivers

Management Information 875tem

Q. P. Code: 855301

			(3 Hours)	I Tradal No.	00
,				[Total Marks	: 80
1	N.B	.: (1) Question No.1 is Compulsory.		
		(2	2) Attempt any 3 questions out of rest.		
		(3	3) Figure to the right indicate full marks.		
		(4	4) All questions carry equal marks.		
			•		
	1.		College wants to design database for examination syst	em.	
		a)	Design tables with assuming suitable attributes and no database.	rmalize the	5
		b)	Define primary key, foreign key with its importance in List Primary and foreign key in each table of above tal	n database design.	5
		c)	Draw Star schema and Snowflake schema for above de	esign.	5
		d)	Explain difference between star schema and snowflake purpose of normalization.	e schema with	5
	2.	a)	Explain Several ways in which IT impacts employees explain how IT might change manager's job.	at work. Also	10
		b)	Explain E-Commerce with its various types.		10
	3.	a)	Explain Characteristics of data warehouse. Differentia warehouse and data marts.	te between data	10
		b)	Explain Customer relationship Management with its va	arious types.	10
	4.	a) b)	Define Big Data. Explain various characteristics and is Explain various Business intelligence Applications for Results.	ssues in Big Data. presenting	10 10
	5.	a) b)	Explain traditional system development life cycle. Explain various threats to information system.		10 10
	6.	a) b)	Write short notes on any two Enterprise Resource planning Pervasive Computing		20

Cloud computing model